Google präsentiert Budget‑Tracker für KI‑Agenten – Tool-und Rechenverbrauch optimiert
In einer neuen Studie von Forschern bei Google und der UC Santa Barbara wurde ein innovatives Framework entwickelt, das KI‑Agenten ermöglicht, ihre Tool‑ und Rechenbudgets deutlich effizienter zu nutzen. Durch gezielte Kontrolle der verfügbaren Ressourcen können die Agenten ihre Entscheidungen besser abstimmen und unnötige Rechenzyklen vermeiden.
Das Framework besteht aus zwei Kernkomponenten: einem einfachen „Budget Tracker“, der die verbleibende Kapazität in Echtzeit überwacht, und dem umfassenderen Konzept „Budget Aware Test‑time Scaling“. Beide Ansätze machen die Agenten explizit bewusst, wie viel Rechenleistung und Tool‑Aufrufe ihnen noch zur Verfügung stehen, und passen ihr Verhalten entsprechend an.
Für Unternehmen und Entwickler bedeutet dies einen praktischen Weg, leistungsfähige KI‑Agenten einzusetzen, ohne mit unvorhersehbaren Kosten oder sinkender Rendite konfrontiert zu werden. Traditionelle Test‑time‑Scaling‑Methoden konzentrieren sich darauf, Modelle länger „nachdenken“ zu lassen, doch bei agentischen Aufgaben wie dem Web‑Surfen bestimmen die Anzahl der Tool‑Aufrufe die Tiefe und Breite der Exploration. Tool‑Aufrufe verbrauchen Tokens, verlängern den Kontext, erhöhen die Latenz und bringen zusätzliche API‑Kosten mit sich.
Die Ergebnisse zeigen, dass ein bloßes Aufstocken der Ressourcen nicht automatisch zu besseren Leistungen führt. Agenten, die keine Budget‑Bewusstheit besitzen, neigen dazu, Ressourcen zu verschwenden. Das vorgestellte Framework bietet daher eine effektive Lösung, um Kosten und Latenz zu kontrollieren, während gleichzeitig die Leistungsfähigkeit der Agenten erhalten bleibt.