PTSM: Neues EEG‑Decodierungsmodell erzielt beeindruckende Zero‑Shot‑Leistung

arXiv – cs.LG Original ≈1 Min. Lesezeit
Anzeige

Die neueste Veröffentlichung auf arXiv präsentiert PTSM – ein physiologie‑bewusstes und aufgaben‑invariantes Spatio‑Temporal‑Modell, das die Herausforderung des Cross‑Subject‑EEG‑Decodings mit Bravour meistert. Durch einen dualen Maskierungsmechanismus lernt das System gleichzeitig persönliche und gemeinschaftliche Muster, sodass individuelle neuronale Signaturen erhalten bleiben, während gleichzeitig task‑relevante, populationsweite Features extrahiert werden.

Die Masken werden entlang der zeitlichen und räumlichen Dimensionen faktorisiert, was eine feine Steuerung der dynamischen EEG‑Muster ermöglicht, ohne die Rechenlast zu erhöhen. Zusätzlich setzt PTSM informationstheoretische Beschränkungen ein, die die latenten Einbettungen in orthogonale, auf Aufgaben und Subjekte ausgerichtete Unterräume aufspalten. Das Modell wird end‑to‑end mit einer mehrzieligen Verlustfunktion trainiert, die Klassifikation, Kontrastivität und Entanglement kombiniert.

Umfangreiche Tests an Motor‑Imagery‑Datensätzen zeigen, dass PTSM eine starke Zero‑Shot‑Generalisation erreicht und damit die aktuellen Spitzenreiter übertrifft – und das ohne subjektspezifische Kalibrierung. Die Ergebnisse unterstreichen die Wirksamkeit von entangled neural representations für personalisierte und gleichzeitig übertragbare Decodierung in nicht‑stationären neurophysiologischen Umgebungen.

Ähnliche Artikel