KI und Mensch im Wettstreit: Wie sicher erkennen wir Phishing‑E‑Mails?<br/>

arXiv – cs.AI Original ≈1 Min. Lesezeit
Anzeige

In einer neuen Studie aus dem arXiv‑Repository wurde untersucht, wie Menschen und moderne KI‑Modelle gemeinsam Phishing‑E‑Mails erkennen. Dabei wurden drei leicht erklärbare Algorithmen – Logistische Regression, Entscheidungsbäume und Random Forests – mit klassischen TF‑IDF‑Features sowie semantischen Einbettungen trainiert.

Die Vorhersagen der Modelle wurden anschließend mit den Einschätzungen von menschlichen Prüfern verglichen, die zusätzlich ihre Vertrauensstufen und sprachliche Beobachtungen festhielten. Die Ergebnisse zeigen, dass die KI‑Modelle zwar hohe Genauigkeiten erzielen, ihr Vertrauen jedoch stark schwankt. Im Gegensatz dazu nutzen die menschlichen Evaluatoren eine breitere Palette an sprachlichen Hinweisen und bewahren ein konsistenteres Vertrauen.

Besonders auffällig war, dass die Sprachkompetenz der Prüfer kaum Einfluss auf die Erkennungsleistung hat, während das Alter einen signifikanten Effekt zeigt. Diese Erkenntnisse liefern wertvolle Hinweise für die Entwicklung transparenter KI‑Systeme, die menschliche kognitive Prozesse ergänzen und die Zusammenarbeit zwischen Mensch und Maschine in der Analyse von irreführenden Inhalten verbessern.

Ähnliche Artikel