Neues Deep‑Learning-Modell identifiziert metabolische Subtypen bei Typ‑1‑Diabetes
Eine aktuelle Veröffentlichung auf arXiv präsentiert ein innovatives, erklärbares Deep‑Learning‑Framework, das die metabolische Heterogenität bei Typ‑1‑Diabetes (T1D) besser abbilden soll. Im Gegensatz zu herkömmlichen Biomarkern wie HbA1c nutzt das Modell kontinuierliche Glukosemessungen (CGM) und Laborprofile, um multimodale zeitliche Einbettungen des individuellen Stoffwechsels zu erzeugen.
Die zeitlichen Abhängigkeiten zwischen den verschiedenen Datenquellen werden mithilfe eines Transformer‑Encoders modelliert, während latente metabolische Phänotypen durch Gaussian‑Mixture‑Modeling identifiziert werden. Auf diese Weise entstehen fünf unterschiedliche metabolische Subgruppen, die von metabolischer Stabilität bis zu erhöhtem kardiometabolischem Risiko reichen.
Die Analyse der Attention‑Gewichte des Transformers zeigt, dass die Glukosevariabilität der dominierende zeitliche Faktor ist. Ergänzend liefert die SHAP‑Analyse, welche Merkmale die Phänotyp‑Unterscheidung am stärksten beeinflussen, Aufschluss über die wichtigsten Biomarker: HbA1c, Triglyceride, Cholesterin, Kreatinin und TSH.
Die Zugehörigkeit zu den identifizierten Phänotypen weist statistisch signifikante, wenn auch moderate Zusammenhänge mit Bluthochdruck, Herzinfarkt und Herzinsuffizienz auf. Damit demonstriert das Modell, dass physiologisch kohärente metabolische Untergruppen in T1D existieren und die Risiko‑Stratifizierung über einzelne Biomarker hinaus verbessern können.