Unüberwachtes LSTM‑Autoencoder‑Modell erkennt frühzeitig Ausfälle bei Turbofan‑Triebwerken
Ein neues, unüberwachtes Gesundheitsmonitoring‑Framework für Turbofan‑Triebwerke wurde vorgestellt, das keine Lauf‑bis‑Ausfall‑Labels benötigt. Durch eine regressionsbasierte Normalisierung werden die Effekte der Betriebsbedingungen in den NASA CMAPSS‑Sensordaten entfernt, bevor ein Long Short-Term Memory (LSTM) Autoencoder ausschließlich auf den gesunden Teil jeder Trajektorie trainiert wird.
Der Ansatz nutzt einen adaptiven, datengetriebenen Schwellenwert, um anhaltende Rekonstruktionsfehler zu erkennen. Sobald die Fehler die Grenze überschreiten, werden sofortige Warnmeldungen ausgelöst – ohne manuell abgestimmte Regeln. Die Benchmark‑Ergebnisse zeigen eine hohe Trefferquote und niedrige Fehlalarmraten in mehreren Betriebsregimen.
Damit lässt sich das Verfahren schnell in bestehende Flotten integrieren, skaliert auf unterschiedliche Triebwerksmodelle und ergänzt bestehende Remaining‑Useful‑Life‑Modelle als zusätzliche Frühwarnschicht.