SPGCL: Stärkeres Graph-Kontrastlernen durch SVD-gesteuerte Strukturbearbeitung

arXiv – cs.LG Original ≈2 Min. Lesezeit
Anzeige

Graph Neural Networks (GNNs) sind besonders anfällig für strukturelle Störungen wie zufällige oder fehlende Kanten, die durch Angriffe oder Messfehler entstehen. Traditionelle graphkontrastive Lernmethoden setzen entweder auf rein zufällige Störungen, die wichtige Verbindungen entfernen können, oder auf rein spektrale Augmentierungen, die zwar globale Strukturen bewahren, aber oft zu dichten und wenig vielfältigen Ansichten führen. SPGCL (SVD‑Guided Structural Perturbation) verbindet die Vorteile beider Ansätze, indem es leichte, stochastische Kantenermittlungen mit einer SVD‑basierten Rekonstruktionsphase kombiniert.

Der Kernmechanismus von SPGCL besteht darin, zunächst gezielt Kanten zu entfernen und anschließend mithilfe einer Singular Value Decomposition (SVD) fehlende, aber semantisch relevante Verbindungen wiederherzustellen. Durch die Auswahl der Top‑rangierten Kanten und deren Zusammenführung wird eine gezielte, sparsante Densifizierung erreicht, die die ursprüngliche Graphstruktur bewahrt und gleichzeitig die Vielfalt der Ansichten erhöht. Diese Balance zwischen Entfernung und Wiederherstellung sorgt dafür, dass die kontrastiven Signale echte strukturelle Unterschiede widerspiegeln, anstatt lediglich Unterschiede in der Kantenzahl zu messen.

Zusätzlich integriert SPGCL ein kontrastives Fusion-Modul, das durch eine globale Ähnlichkeitsbeschränkung reguliert wird. Dieses Modul sorgt dafür, dass die beiden erzeugten Ansichten besser aufeinander abgestimmt sind und die Lernsignalstärke erhöht wird. Die Kombination aus struktureller Perturbation und gezielter Fusion ermöglicht eine robustere und präzisere Ausrichtung der GNN‑Modelle.

In umfangreichen Experimenten auf zehn Standard‑Benchmark‑Datensätzen zeigte SPGCL eine konsequente Verbesserung der Robustheit und Genauigkeit von Basis‑GNN‑Modellen. Die Ergebnisse übertrafen sowohl aktuelle graphkontrastive Lernverfahren als auch strukturbasierte Lernmethoden und demonstrieren damit die Wirksamkeit der SVD‑gesteuerten strukturellen Perturbation als zukunftsweisende Technik im Graph‑Learning‑Bereich.

Ähnliche Artikel