Blockwise Hadamard high-Rank Adaptation for Parameter-Efficient LLM Fine-Tuning
Anzeige
Ähnliche Artikel
arXiv – cs.AI
•
Efficiency vs. Alignment: Investigating Safety and Fairness Risks in Parameter-Efficient Fine-Tuning of LLMs
arXiv – cs.LG
•
ScaLoRA: Optimally Scaled Low-Rank Adaptation for Efficient High-Rank Fine-Tuning
arXiv – cs.AI
•
Hallucination reduction with CASAL: Contrastive Activation Steering For Amortized Learning
arXiv – cs.LG
•
Fine-tuning of Large Language Models for Domain-Specific Cybersecurity Knowledge
arXiv – cs.AI
•
Neues RAGsemble-Framework verbessert Extraktion von Industrie-Teilspezifikationen
arXiv – cs.LG
•
Effiziente Schätzung von LLM-Judges trotz Rauschen