Deductive AI spart DoorDash 1.000 Ingenieurstunden durch automatisiertes Debugging
In einer Zeit, in der Software immer komplexer wird und KI‑Tools Code schneller generieren als je zuvor, verschärft sich ein grundlegendes Problem: Entwickler verbringen bis zu die Hälfte ihrer Arbeitszeit damit, Fehler zu finden, anstatt neue Produkte zu bauen. Diese Belastung hat die Entwicklung einer völlig neuen Klasse von Werkzeugen ausgelöst – KI‑Agenten, die Produktionsausfälle in Minuten statt Stunden diagnostizieren können.
Deductive AI, ein Startup, das erst kürzlich aus dem Stealth‑Modus hervorging, hat eine Lösung entwickelt, die auf Reinforcement Learning basiert – dieselbe Technologie, die hinter modernen Spiel‑KI‑Systemen steckt. Das Unternehmen hat 7,5 Millionen US-Dollar Seed‑Finanzierung erhalten, angeführt von CRV, mit Beteiligung von Databricks Ventures, Thomvest Ventures und PrimeSet. Ziel ist es, „AI‑SRE‑Agenten“ zu kommerzialisieren, die Softwarefehler mit Maschinenleistung erkennen und beheben.
Die Idee spricht ein weit verbreitetes Ärgernis in Engineering‑Teams an: Beobachtungstools zeigen zwar, dass etwas kaputt ist, liefern aber selten Erklärungen. Wenn ein Produktionssystem um 3 Uhr morgens ausfällt, müssen Ingenieure noch Stunden damit verbringen, Logs, Metriken, Deploy‑Histories und Code‑Änderungen über Dutzende von miteinander verbundenen Services zu durchsuchen, um die Ursache zu finden. Die Komplexität moderner Infrastrukturen macht die Fehlerdiagnose zu einer Aufgabe, die einem Nadel suchen im Heuhaufen gleicht.
Deductive AI verspricht, diese Zeitverschwendung drastisch zu reduzieren. Durch die Kombination von KI‑gestützter Analyse und automatisierten Diagnoseprozessen sollen Entwickler in der Lage sein, Ausfälle schneller zu lokalisieren und zu beheben, wodurch wertvolle Stunden eingespart und die Produktivität gesteigert werden.