SNAP: Schnelle Testzeit-Anpassung mit sparsamen Updates für Edge-Geräte

arXiv – cs.LG Original ≈1 Min. Lesezeit
Anzeige

Testzeit-Anpassung (TTA) passt Modelle an, indem sie unlabeled Testdaten nutzen, um sich dynamisch verändernde Verteilungen zu handhaben. Bisher erfordern die meisten Verfahren jedoch häufige Updates und hohe Rechenkosten, was sie für ressourcenbeschränkte Edge‑Geräte ungeeignet macht.

Mit dem neuen Framework SNAP wird die Adaptationsfrequenz drastisch reduziert, ohne die Genauigkeit zu gefährden. SNAP arbeitet mit nur 1 % des einlaufenden Datenstroms und bleibt dabei konkurrenzfähig – ein deutlicher Fortschritt für Anwendungen, die auf niedrige Latenz angewiesen sind.

Das System setzt auf zwei zentrale Bausteine: Erstens die Class and Domain Representative Memory (CnDRM), die eine kleine, aber aussagekräftige Stichprobe speichert, die sowohl Klassen- als auch Domänenmerkmale abbildet. Zweitens die Inference‑only Batch‑aware Memory Normalization (IoBMN), die die Normalisierungsstatistiken dynamisch anpasst, indem sie diese Repräsentanten nutzt. Zusammen ermöglichen sie eine effiziente Ausrichtung an sich verändernde Zieldomänen.

In Kombination mit fünf führenden TTA‑Algorithmen senkt SNAP die Latenz um bis zu 93,12 % und hält den Genauigkeitsverlust unter 3,3 %, selbst bei Adaptationsraten zwischen 1 % und 50 %. Diese Ergebnisse unterstreichen das große Potenzial von SNAP für den Einsatz in Edge‑Umgebungen, die schnelle Reaktionszeiten erfordern. Der Quellcode ist frei verfügbar unter https://github.com/chahh9808/SNAP.

Ähnliche Artikel