Mehrere Agenten optimieren Schlafmodus im 5G‑mmWave‑Netzwerk: Energieeffizienz gesteigert

arXiv – cs.LG Original ≈1 Min. Lesezeit
Anzeige

In modernen 5G‑mmWave‑Netzwerken ist die Optimierung des Schlafmodus entscheidend, um die Energieeffizienz zu maximieren und gleichzeitig die Qualitätsanforderungen zu erfüllen. Traditionelle Ansätze nutzen jedoch aggregierte, statische Verkehrsmodelle, die die dynamische Natur des Datenverkehrs nicht abbilden und große Zustands‑ und Aktionsräume erzeugen, was die praktische Umsetzung erschwert.

Die neue Studie präsentiert ein Multi‑Agenten‑Deep‑Reinforcement‑Learning‑Framework namens MARL‑DDQN, das speziell für adaptive Schlafmodus‑Optimierung in dreidimensionalen städtischen Umgebungen entwickelt wurde. Durch die Einbindung eines realistischen Basisstations‑Energieverbrauchsmodells und Beamforming‑Techniken kann das System die Energieeffizienz präzise berechnen und gleichzeitig die Durchsatz‑Qualität sicherstellen.

Im Gegensatz zu herkömmlichen Single‑Agenten‑Lösungen ermöglicht MARL‑DDQN eine skalierbare, verteilte Entscheidungsfindung mit minimalem Signalisierungsaufwand. Das System passt die Schlafmodus‑Strategien dynamisch an, reduziert Interzell‑Störungen und gewährleistet faire Durchsatzverteilung.

Simulationen zeigen, dass MARL‑DDQN bestehende Methoden wie All On, IT‑QoS‑LB, MARL‑DDPG und MARL‑PPO deutlich übertrifft. Es erreicht bis zu 0,60 Mbit/Joule Energieeffizienz, einen 10‑Perzentil‑Durchsatz von 8,5 Mbps und erfüllt die QoS‑Bedingungen in 95 % der Fälle unter dynamischen Bedingungen.

Ähnliche Artikel