Neues Verfahren reduziert Bias in Graph Neural Networks trotz fehlender Sensitivitätsdaten
Graph Neural Networks (GNNs) haben sich als äußerst leistungsfähig bei relationalen Lernaufgaben wie Knotenkategorisierung und Linkvorhersage etabliert. Gleichzeitig können sie gesellschaftliche Vorurteile verstärken, wenn sensible Merkmale – etwa Rasse oder Geschlecht – in den Knotendaten, der Graphstruktur oder den Nachrichtenübertragungen eingebettet sind.
Der größte Nachteil bisheriger fairness‑bewusster GNN‑Methoden besteht darin, dass sie davon ausgehen, dass sämtliche sensible Attribute für alle Knoten während des Trainings vollständig vorliegen. In der Praxis ist das jedoch selten der Fall, da Datenschutzbedenken und begrenzte Datenerhebung die Verfügbarkeit einschränken.
Um dieses Problem zu lösen, wurde ein neues, modellagnostisches Regularisierungsframework entwickelt, das auch bei partiell vorhandenen sensiblen Daten funktioniert. Das Verfahren integriert differenzierbare Straftermine für Gleichberechtigung (Equal Opportunity) und statistische Parität in die Zielfunktion, sodass Fairness direkt während des Lernens optimiert wird.
In umfangreichen Experimenten mit fünf realen Benchmark‑Datensätzen zeigte das Verfahren eine signifikante Reduktion von Bias‑Maßen, während die Klassifikationsgenauigkeit nahezu unverändert blieb. Im Vergleich zu bestehenden Basismodellen erzielte die neue Methode konsequent ein besseres Gleichgewicht zwischen Fairness und Genauigkeit.
Diese Ergebnisse deuten darauf hin, dass GNN‑Modelle in der Praxis fairer gestaltet werden können, ohne auf vollständige sensible Attribute angewiesen zu sein – ein wichtiger Schritt zur verantwortungsvollen Nutzung von Graph‑Daten in sensiblen Anwendungsbereichen.