SA^2GFM: Graph‑Modelle mit strukturorientierter Augmentation erhöhen Robustheit

arXiv – cs.LG Original ≈1 Min. Lesezeit
Anzeige

Graph‑Foundation‑Models (GFMs) haben in den letzten Jahren bemerkenswerte Fortschritte erzielt, doch ihre Widerstandsfähigkeit gegenüber Domänenrauschen, strukturellen Störungen und gezielten Angriffen bleibt bislang unzureichend. Das neue Framework SA^2GFM adressiert dieses Problem, indem es die hierarchische Struktursemantik gezielt nutzt und damit die Generalisierung von GFMs deutlich verbessert.

Im Kern wandelt SA^2GFM Entropie‑basierte Kodierungstrees in strukturorientierte Text‑Prompts um, die anschließend als Feature‑Augmentierung dienen. Diese erweiterten Eingaben werden von einem selbstüberwachten Information‑Bottleneck verarbeitet, der robuste, übertragbare Repräsentationen durch strukturgeleitete Kompression erzeugt.

Um negative Transfer‑Effekte bei der Domänenanpassung zu vermeiden, kombiniert das System ein Expert‑Adaptive‑Routing‑Modul, das eine Mischung aus Experten‑Architekturen mit einem Null‑Experten‑Design nutzt. Für die effiziente Feinabstimmung wird ein spezielles Fine‑Tuning‑Modul eingeführt, das hierarchische Strukturen durch gemeinsames intra‑ und inter‑Community‑Lernen optimiert.

Umfangreiche Experimente zeigen, dass SA^2GFM neun führende Baselines in Bezug auf Effektivität und Robustheit übertrifft – sowohl bei zufälligem Rauschen als auch bei adversarialen Störungen für Knoten‑ und Graph‑Klassifikationsaufgaben. Das Ergebnis unterstreicht, dass strukturorientierte semantische Augmentation ein entscheidender Schritt zur Stärkung von Graph‑Modellen darstellt.

Ähnliche Artikel