Fine-tuning Large Language Models with Limited Data: A Survey and Practical Guide
Anzeige
Ähnliche Artikel
arXiv – cs.LG
•
The Choice of Divergence: A Neglected Key to Mitigating Diversity Collapse in Reinforcement Learning with Verifiable Reward
arXiv – cs.LG
•
SA^2GFM: Graph‑Modelle mit strukturorientierter Augmentation erhöhen Robustheit
arXiv – cs.AI
•
Große Sprachmodelle lernen Belohnungs-Hacking: Risiko von Missalignment
arXiv – cs.LG
•
Shared Parameter Subspaces and Cross-Task Linearity in Emergently Misaligned Behavior
arXiv – cs.AI
•
Self-evolving expertise in complex non-verifiable subject domains: dialogue as implicit meta-RL
arXiv – cs.AI
•
PromptFlow: Training Prompts Like Neural Networks