EventTSF: Ereignisbasierte Vorhersage nicht‑stationärer Zeitreihen mit Textdaten

arXiv – cs.LG Original ≈1 Min. Lesezeit
Anzeige

Die Vorhersage von Zeitreihen ist in Bereichen wie Energieversorgung und Verkehr unverzichtbar. Dabei sind die Daten häufig nicht‑stationär, also von sich ändernden Mustern geprägt, die eng mit externen Ereignissen verknüpft sind. Traditionelle Modelle berücksichtigen meist nur die numerische Zeitreihe, wodurch wichtige kontextuelle Informationen aus Texten ungenutzt bleiben.

EventTSF löst dieses Problem, indem es eine autoregressive Diffusionsarchitektur nutzt, die historische Zeitreihen mit Text‑Ereignissen kombiniert. Durch adaptive Zeitstempel‑Kontrolle werden Unsicherheiten, die aus der Semantik der Texte entstehen, direkt in den Modellablauf integriert. Der Kern des Ansatzes ist ein multimodaler U‑Transformer, der zeitliche und textuelle Signale auf unterschiedlichen Auflösungen effizient zusammenführt.

Die Methode adressiert drei zentrale Herausforderungen: die präzise Synchronisation diskreter Textereignisse mit kontinuierlichen Zeitreihen, die durch Semantik bedingte zeitliche Unsicherheit und die Diskrepanz zwischen Text‑Embeddings und mehrschichtigen Zeitmustern. In umfangreichen Experimenten zeigte EventTSF eine deutliche Leistungssteigerung gegenüber ein‑Modalen Basismodellen, insbesondere bei stark schwankenden, nicht‑stationären Daten.

EventTSF eröffnet damit neue Perspektiven für die Integration von natürlichen Sprachdaten in die Zeitreihenanalyse und bietet eine robuste Lösung für komplexe, dynamische Anwendungsfälle.

Ähnliche Artikel