Craftax-MA: Neuer Benchmark für Multi-Agent Reinforcement Learning im Hypermaß

arXiv – cs.LG Original ≈1 Min. Lesezeit
Anzeige

In der Forschung zu Multi-Agent Reinforcement Learning (MARL) fehlt bislang ein Benchmark, der die langfristigen Abhängigkeiten und Generalisierungsfähigkeiten realer Mehragentensysteme ausreichend herausfordert. Mit der Einführung von Craftax-MA wird dieses Bedürfnis adressiert. Das neue Umfeld erweitert das beliebte Open‑Ended RL‑Spiel Craftax um mehrere Agenten und ermöglicht die Bewertung einer breiten Palette von Fähigkeiten innerhalb einer einzigen Umgebung.

Craftax-MA wurde in JAX implementiert und überzeugt durch außergewöhnliche Geschwindigkeit: Ein Trainingslauf mit 250 Millionen Interaktionen schließt in weniger als einer Stunde ab. Diese Effizienz eröffnet Forschern die Möglichkeit, umfangreiche Experimente in kurzer Zeit durchzuführen und die Grenzen aktueller MARL‑Methoden systematisch zu untersuchen.

Um die Komplexität weiter zu erhöhen, wurde zusätzlich Craftax-Coop entwickelt. Dieses Umfeld führt heterogene Agenten, Handel und weitere Mechaniken ein, die eine komplexe Kooperation erfordern. Die Analyse zeigt, dass bestehende Algorithmen bei Schlüsselherausforderungen wie langfristiger Kreditzuweisung, Exploration und Kooperation noch stark zurückbleiben.

Der neue Benchmark soll daher als Katalysator für langfristige Fortschritte im Bereich MARL dienen und die Entwicklung robuster, generalisierbarer Lernalgorithmen vorantreiben.

Ähnliche Artikel