Mehragenten‑VLMs verbessern Offensiv‑Content‑Erkennung mit PNU‑Loss
Die Erkennung von beleidigendem Inhalt in sozialen Medien erfordert präzise, gelabelte Daten – ein Ziel, das oft durch die geringe Häufigkeit solcher Vorkommnisse und die hohen Kosten für manuelle Annotationen erschwert wird. Um dieses Problem zu lösen, stellt ein neues Forschungsprojekt einen selbstlernenden Rahmen vor, der große Mengen unlabelter Daten nutzt und dabei die Kraft mehrerer Vision‑Language‑Modelle (MA‑VLMs) einsetzt.
Der Ansatz beginnt mit einem schlanken Klassifikator, der auf einer kleinen, aber hochwertigen Trainingsmenge basiert. Anschließend werden unlabelte Beiträge iterativ mit Pseudo‑Labels versehen, wobei die MA‑VLMs als unabhängige Prüfer fungieren. Wenn Klassifikator und MA‑VLMs übereinstimmen, werden die Daten dem „Agreed‑Unknown“-Set zugeordnet; bei Konflikten entsteht das „Disagreed‑Unknown“-Set. Durch die Simulation zweier Perspektiven – eines Moderators und eines Nutzers – erfassen die MA‑VLMs sowohl regulatorische als auch subjektive Sichtweisen, was die Zuverlässigkeit der Pseudo‑Labels erhöht.
Zur weiteren Verbesserung der Modellleistung wird ein neuartiger Positive‑Negative‑Unlabeled (PNU) Loss eingesetzt. Dieser kombiniert die Informationen aus den gelabelten Daten sowie aus beiden Unkown‑Sets und reduziert gleichzeitig die Auswirkungen von fehlerhaften Pseudo‑Labels. In umfangreichen Experimenten über Standard‑Benchmarks hinweg übertrifft das System die bisherigen Baselines deutlich und kommt selbst bei begrenzter Supervision fast an die Leistung großer, kostenintensiver Modelle heran.